A Geometric Jacquet Functor 3

نویسنده

  • K. VILONEN
چکیده

In the paper [BB1], Beilinson and Bernstein used the method of localisation to give a new proof and generalisation of Casselman’s subrepresentation theorem. The key point is to interpret n-homology in geometric terms. The object of this note is to go one step further and describe the Jacquet module functor on Harish-Chandra modules via geometry. Let GR be a real reductive linear algebraic group, and let KR be a maximal compact subgroup of GR. We use lower-case gothic letters to denote the corresponding Lie algebras, and omit the subscript “R” to denote complexifications. Thus (g,K) denotes the Harish-Chandra pair corresponding to GR. Let h be the universal Cartan of g, that is h = b/[b, b] where b is any Borel of g. We equip h with the usual choice of positive roots by declaring the roots of b to be negative. We write ρ ∈ h for half the sum of the positive roots. To any λ ∈ h we associate a character χλ of the centre Z(g) of the universal enveloping algebra U(g) via the Harish-Chandra homomorphism. Under this correspondence, the element ρ ∈ h corresponds to the trivial character χρ. For the rest of this paper, we work with λ ∈ h ∗

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Geometric Jacquet Functor

In the paper [BB1], Beilinson and Bernstein used the method of localisation to give a new proof and generalisation of Casselman’s subrepresentation theorem. The key point is to interpret n-homology in geometric terms. The object of this note is to go one step further and describe the Jacquet module functor on Harish-Chandra modules via geometry. Let GR be a real reductive linear algebraic group...

متن کامل

Generalized Jacquet modules of parabolic induction

In this paper we study the some generalization of Jacquet modules of parabolic induction and construct a filtration on it. The successive quotient of the filtration is written by using the twisting functor.

متن کامل

A Note on Jacquet Functors and Ordinary Parts

In this note we relate Emerton’s Jacquet functor JP to his ordinary parts functor OrdP , by computing the χ-eigenspaces Ord χ P for central characters χ. This fills a small gap in the literature. One consequence is a weak adjunction property for unitary characters χ appearing in JP , with potential applications to local-global compatibility in the p-adic Langlands program in the ordinary case.

متن کامل

Affine Jacquet Functors and Harish-chandra Categories

We define an affine Jacquet functor and use it to describe the structure of induced affine Harish-Chandra modules at noncritical levels, extending the theorem of Kac and Kazhdan [10] on the structure of Verma modules in the Bernstein–Gelfand–Gelfand categories O for Kac–Moody algebras. This is combined with a vanishing result for certain extension groups to construct a block decomposition of th...

متن کامل

Emerton’s Jacquet Functors for Non-Borel Parabolic Subgroups

This paper studies Emerton’s Jacquet module functor for locally analytic representations of p-adic reductive groups, introduced in [Eme06a]. When P is a parabolic subgroup whose Levi factor M is not commutative, we show that passing to an isotypical subspace for the derived subgroup ofM gives rise to essentially admissible locally analytic representations of the torus Z(M), which have a natural...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008